Structural and Physical Property Studies of Amorphous ZnInSnO Thin Films
نویسندگان
چکیده
The structures in amorphous (a-) Zn, Sn co-doped In2O3 (ZITO) thin films grown by pulsed laser deposition on glass under varying oxygen pressure or with varying Sn:Zn ratios were determined using X-ray absorption spectroscopy and anomalous X-ray scattering. Typical structures around cations in a-ZITO films are described and compared with crystalline (c-) ZITO films. The results show that the Zn cations are fourfold coordinated with Zn–O bond lengths of 1.98 ± 0.02 Å, which is close to that in bulk ZnO. As a consequence, the second coordination shells around Zn contract. At longer distances away from Zn, the structure is commensurate with the averaged structure. The unit volume around In also contracts slightly compared to bulk In2O3, whereas the Sn–O bond length is similar to the one in bulk SnO2. These unique structural characteristics may account for the films’ superior thermal stability over amorphous Sn-doped In2O3, and suggest that Zn and Sn act as network-forming cations. Like in c-ZITO, coordination numbers (N) around Sn, In, and Zn follow the order NSn > NIn > NZn. Unlike in c-ZITO, where electrical properties change significantly with a slight variation in the Sn: Zn ratio, this variation does not markedly alter the electrical properties, or the local structures, of a-ZITO films. Dramatic changes in the electrical properties occur for films grown under various oxygen pressures, which point to oxygen “defects” as the source of charge carriers.
منابع مشابه
Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis
Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...
متن کاملSTUDY OF THICKNESS DEPENDENT CHARACTERICTICS OF Cu2S THIN FILM FOR VARIOUS APPLICATIONS
Abstract: Different thickness of Cu2S thin films were prepared by vacuum evaporation under a pressure of 10-6 torr at an evaporation rate of 3Å /sec. Cu2S has direct band gap energy and indirect band gap energy at 1.2eV and 1.8 eV respectively. This paper presents the analysis of structural and optical properties of the Cu2S thin film by X-ray diffractometer (XRD) and UV-Vis-NIR Spectrophotomet...
متن کاملEffect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering
Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...
متن کاملThermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملPhysical Properties of Reactively Sputter-Deposited C-N Thin Films
This work aims to prepare and study amorphous carbon nitride (CNx) films. Films were deposited by reactive magnetron radiofrequency (RF) sputtering from graphite target in argon and nitrogen mixture discharge at room temperature. The ratio of the gas flow rate was varied from 0.1 to 1. Deposited films were found to be amorphous. Highest Nitrogen concentration achieved was 42 atomic percent whic...
متن کامل